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Abstract

Propagation of flexural and shear waves in an unbounded sandwich beam is considered. This beam is
thought of as a ‘unit width strip’, which is cut from an unbounded sandwich plate in the direction of
propagation of a plane flexural or shear wave. The skin plies of such a plate (or, in effect, a beam) are made
of a homogeneous material, whereas the core ply is microscopically inhomogeneous. This consists of foam
bulk material filled by multiple inclusions whose orientation may be varied in a prescribed manner both in
space and in time domains to generate stiffness modulation. At the macro-level, this composition of two
‘standard’ skin plies with a ‘two-phase’ core ply manifests itself as a homogenized smart ‘dynamic’ material
having controlled distributed stiffness parameters. Control of the wave motions in a sandwich beam made
of this material is then limited to wavelengths, which greatly exceed the characteristic size of cell elements of
the micro-structure in the core ply and therefore to comparatively low frequencies. It is shown that
asymptotically small stiffness modulations are capable of transforming propagating waves existing in a
plate of constant stiffness to non-propagating ones. This mechanism of suppression of wave propagation in
sandwich beams always co-exists with suppression of wave propagation due to the presence of internal
damping in the material of all plies. The efficiency of the suggested mechanism is therefore estimated by the
comparison of decrements of amplitudes of ‘almost’ propagating waves produced by the stiffness
modulation and to the internal damping.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In many technical applications, it is necessary to suppress the propagation of elastic waves in
thin walled structures (e.g., plates and shells) in order to improve their NVH (noise, vibration and
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harshness) characteristics. As is quite typical, e.g., for analysis of dynamics of an aircraft fuselage
or a car, a ‘loading zone’ (where the driving forces are applied) has relatively small dimensions
(compared with the dimensions of the whole structure). Since in such a case vibration suppression
measures may hardly be performed in the source of excitation, the vibration control and
suppression strategy is associated with damping of propagating structural waves. Following
Ref. [1], such a situation is specified as the local control of structural waves. Then feedback and
feedforward active control strategies (based on measurements of vibration/sound radiation field
from primary sources with the use of some ‘corrective’ secondary ones) are considered as the most
efficient tools to suppress the energy transportation.
An alternative way to suppress wave propagation and radiation of sound is associated with the

recent advances in material technology, which make it possible to manufacture so-called smart
materials. In particular, the concept of ‘dynamic materials’ as a special type of smart materials
designed to suppress vibrations has been suggested and elaborated in recent papers [2–7]. This concept
is in effect based on the ideas of ‘vibrational rheology’ suggested by Blekhman [8]. If a micro-
inhomogeneous composite material is considered, then its mechanical ‘macro-level’ characteristics are
usually derived by homogenization (averaging) of the response of its cell elements to ‘standard’
loading cases at the micro-level. In the literature, for example, in Ref. [9] these elementary cells are
considered as immobile so that the ‘global’ mechanical properties of a smart material are uniquely
defined. However, in principle it is possible to introduce some actuators, which provoke the motion
(oscillation) of cells in a prescribed manner. Then it appears that the ‘global’ mechanical properties of
a smart ‘dynamic’ material [10] after homogenization depend on the parameters of these ‘hidden
motions’ (e.g., the frequency and the amplitude of vibrations of cell elements) besides ‘static’
parameters of cell elements (e.g., dimensions of the cells, their material properties, etc.). This aspect
has been thoroughly considered in Refs. [2,6] and is not pursued any further in the present paper.
In Refs. [2,5–7], the active control of resonant standing waves in a plate made of such a smart

‘dynamic’ material is analyzed. It is shown, that a parametric control introduced as the
modulation of stiffness in a sandwich or honeycomb plate of a finite length effectively prevents
large amplitude vibrations. The same concept has been used to deal with the active control of
wave propagation in Refs. [2–4]. Specifically, a general description of the ‘screening phenomenon’
of wave propagation in an elastic laminate with modulated stiffness and mass parameters is
suggested in Refs. [3,4]. In Ref. [2], the effect of suppression of propagation of flexural waves in an
infinitely long beam is analyzed by the method of multiple scales and it is shown that the
parametric stiffness modulation may transform propagating flexural waves into evanescent ones.
In the present paper, the concept of parametric stiffness modulation is applied for analysis of

suppression of wave propagation in a sandwich beam. This beam is thought of as a ‘unit width
strip’ cut from an unbounded sandwich plate in the direction of propagation of a plane wave. In
Section 2, dispersion polynomial is derived for a beam without stiffness modulation and internal
damping and two regimes of wave motion are identified depending on the excitation frequency.
Then the dynamics of a sandwich beam with stiffness modulation are considered. The method of
multiple scales is used to derive amplitude modulation equations in Section 3. In Section 4,
suppression of wave propagation in a plate with modulated stiffness is analyzed in three cases—
coupled spatial/temporal modulation, purely temporal modulation and purely spatial modula-
tion. The efficiency of the suggested control mechanism in these cases is compared. Finally,
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Section 5 contains a comparison of the efficiency of suppression of wave propagation due to
stiffness modulation and due to internal damping.

2. Wave propagation in a sandwich beam without stiffness modulation

A beam of the sandwich composition, which consists of two symmetrical relatively thin, stiff skin
plies and a thick, soft, core ply is considered. All plies are assumed to be isotropic and the following
non-dimensional parameters are introduced to describe the internal structure of a sandwich plate:
e ¼ hskin=hcore as a thickness parameter, d ¼ rcore=rskin as a density parameter and g ¼ Ecore=Eskin as a
stiffness parameter. In a conventional composite plate, Young’s module of a core ‘static’ micro-
inhomogeneous material is found by some averaging technique, see Ref. [9] and is independent of time
and space. However, if a ‘dynamic’ material is considered, the Young’s module becomes a function of
temporal and spatial co-ordinates. In the framework of the theory given in Refs. [11,12], the
deformation of a sandwich beam element is governed by two independent variables: a displacement of
the mid-surface of the whole element w (which is the same for all plies) and a shear angle y: The
equations of motions of a beam are easily derived from Hamilton’s principle (see details in Ref. [12])
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This system of linear differential equations is written for non-dimensional variables w ¼ wdim=h;
x ¼ xdim=h: In Eqs. (1), h 	 hcore; c0 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
; dots denote derivatives on dimensional

time, @=@t; primes denote derivatives on non-dimensional axial co-ordinate, ð Þ0 	 @ð Þ=@x:
In this section of the paper a beam with constant stiffness is considered, i.e., gðx; tÞ ¼ g0 and in

Eq. (1a) only differentiation of the functions wðx; tÞ and yðx; tÞ should be performed. The analysis
is restricted by the case of harmonic motions and the solution of these equations, which describes
propagation of shear and flexural waves in an infinitely long sandwich beam is formulated as

wðx; tÞ ¼Aw expðikx � iotÞ;

yðx; tÞ ¼Ay expðikx � iotÞ: ð2Þ

The non-dimensional frequency parameter O 	 ðoh=c0Þ and the non-dimensional wave number k
are related to each other by the dispersion polynomial
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For each combination of ðk;OÞ; which satisfies Eq. (3) the amplitudes of flexural and shear waves
are linked by

Aw ¼ iMAy: ð4aÞ

Here the modal coefficient is introduced

M ¼
ðk2 þ ð1� nÞeg0 � O2Þ

ð1� nÞeg0k
; ð4bÞ

As can be seen from Eq. (4a), the shear component of a displacement vector of a sandwich plate is
p=2 out of phase with the lateral displacement in a propagating wave (i.e., for a real-valued wave
number k).
The dispersion polynomial (3) has six roots at each excitation frequency, which are grouped in

three pairs. Those having positive or negative imaginary parts specify evanescent waves, which
decay in the positive or in the negative direction of an axial co-ordinate, respectively. Purely real
positive roots specify waves propagating from the left to the right, whilst those with negative real
parts are related to the waves with negative phase velocity. Due to the natural symmetry of the
problem, it is sufficient to consider only the waves, propagating or decaying from the left to the
right.
In Fig. 1a, the dependence of the non-dimensional purely real wave number k (which defines a

propagating wave at any frequency) on the frequency parameter O is shown for the following set
of parameters of the sandwich beam composition: g0 ¼ 0:01; d ¼ 0:1; e ¼ 0:05; n ¼ 0:3: This is the
dominantly flexural wave as can be seen from Fig. 1b, where the modal coefficient M is plotted
versus the frequency parameter O: In the Kirchhoff plate theory this type of propagating wave
always co-exists with an evanescent wave with a purely imaginary wave number of the same
magnitude. It is similar in this sandwich plate theory, but, as the evanescent waves do not
transport any energy in an infinitely long beam, they are of no specific interest.
However, it is important to note that one more propagating wave may exist in a sandwich

beam. The dependence of its non-dimensional purely real wave number k on the frequency
parameter O is shown in Fig. 2a, while its modal coefficient M is shown in Fig. 2b also as a
function of O: This is a wave of dominantly shear deformation, generated by the sliding of the skin
plies in opposite directions. Its wave number k is smaller than that of the flexural wave. Unlike the
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Fig. 1. (a) A dependence of the non-dimensional wave number k on a frequency parameter O; the first propagating
wave. (b) A dependence of the modal coefficient M on a frequency parameter O; the first propagating wave.
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flexural wave, this wave has a ‘cut-on frequency’, i.e., a frequency, at which purely imaginary
wave number becomes purely real. A dependence of the magnitude of a ‘cut-on frequency’ on
parameter g0 of the sandwich beam composition for d ¼ 0:1; n ¼ 0:3 and e ¼ 0:05 is illustrated in
Fig. 3. As it can be seen from this graph, as the parameter g0 grows (i.e., as the Young’s module of
a core ply tends to the Young’s module of skin plies), this ‘cut-on frequency’ grows and the
dynamic properties of a sandwich beam become similar to those of a Timoshenko beam.
Although it is not a goal of the present paper to analyze in detail validity limits of this sandwich
theory, it should be noted that both dispersion curves predicted agree very well with the low
branches of dispersion curves obtained by solving the equations of motions derived from the two-
dimensional elasticity theory [13,14].

3. Suppression of wave propagation in a sandwich beam by coupled spatial–temporal stiffness

modulation

As shown in the previous section, for any excitation frequency there always exist one or (above
a ‘cut-on frequency’) two free waves propagating in a sandwich beam. As it is well known, they
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Fig. 2. (a) A dependence of the non-dimensional wave number k on a frequency parameter O; the second propagating

wave. (b) A dependence of the modal coefficient M on a frequency parameter O; the second propagating wave.

Fig. 3. A dependence of the magnitude of a ‘cut-on frequency’ on a parameter g0:
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transport the energy ‘injected’ into the structure in a loaded zone, to its remote parts, and
therefore generate vibrations and sound radiation there. As discussed in the Introduction, it is
necessary to explore the possibilities of suppression of these propagating waves. One of these
possibilities is offered by the stiffness modulation performed in both the time and in the space
domains. The feasibility of such a modulation in a sandwich or a honeycomb plate has been
discussed in Refs. [2,5,6] and this aspect is not pursued any further.
Let the non-dimensional stiffness parameter gðx; tÞ be decomposed into the sum of ‘bulk’

constant component g0 and some fairly small fluctuating component g1ðx; tÞ; i.e.,

gðx; tÞ ¼ g0 þ g1ðx; tÞ: ð5Þ

These fluctuations may be produced by, for example, some small variations in an orientation of
the cell elements composing the honeycomb core ply of a three-layered plate, see Ref. [6]. From
the practical viewpoint, it is unrealistic to generate large modulations of the stiffness of the core
ply, so the following inequality is held

jg1ðx; tÞj{g0: ð6Þ

Thus, asymptotically small perturbations of the stiffness should be considered. Then Eq. (5) is re-
written as (m is a formal small parameter, see Ref. [15])

gðx; tÞ ¼ g0 þ mg1ðx; tÞ: ð7Þ

An incident free wave specified by the frequency parameter O and the wave number kðOÞ (found
from Eq. (3) for a given frequency) is considered. This wave has to be suppressed by the means of
stiffness modulation. To solve this problem, the method of multiple scales is used [15] and a lateral
displacement and a shear angle are decomposed into regular asymptotic expansions of the same
small parameter m

wðx; tÞ ¼w0ðx0; t0; x;TÞ þ mw1ðx0; t0; x;TÞ;

yðx; tÞ ¼ y0ðx0; t0; x;TÞ þ my1ðx0; t0; x;TÞ: ð8Þ

Here t0; x0 are the ‘fast’ spatial and temporal co-ordinates, T ; x are the ‘slow’ ones. They are
defined as t0 ¼ t; x0 ¼ x; T ¼ mt; x ¼ mx; respectively.
The harmonic stiffness modulation is introduced as

g1ðx; tÞ ¼ gI
1 cos$t cos Zx: ð9Þ

As discussed in the Introduction, a sandwich beam with modulated stiffness may be regarded as a
beam made of a ‘dynamic material’ [10]. Its mechanical properties are then defined not only by the
‘static’ parameters e; d and g0; but also by the parameters of ‘vibrational rheology’, which are the
amplitude gI

1; the frequency $ and the wave number Z of stiffness modulation. Such a material has
highly adaptive mechanical properties since these parameters may easily be modified in response
to any changes in excitation conditions.
The stiffness modulation in the vicinity of the principal parametric resonance is considered

$ ¼ 2oþ msT : ð10aÞ

Then the modulation wave number is selected as

Z ¼ 2kðoÞ þ msx: ð10bÞ
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As can be seen from Eq. (10b), o and k are linked by the dispersion equation (3), whereas the
frequency $ and the wave number Z of stiffness modulation are not. Small deviations from
these relations are accounted for by the spatial sx and the temporal sT detuning parameters, see
Ref. [15].
The asymptotic expansions (7,8) are substituted into Eqs. (1), which now contain time- and

space-dependent stiffness parameter (9) and the terms to the leading order m0 are collected. Then
the formulation of the problem of propagation of a free wave in a plate without stiffness
modulations is obtained, which defines the dependence of the functions w0ðx0; t0; x;TÞ and
y0ðx0; t0; x;TÞ on ‘fast’ co-ordinates ðx0; t0Þ: To find the dependence of these functions on ‘slow’
variables, a solution is sought in the form

w0 ¼ Awðx;TÞeij þ %Awðx;TÞe�ij þ Bwðx;TÞeic þ %Bwðx;TÞe�ic; ð11aÞ

y0 ¼ Ayðx;TÞeij þ %Ayðx;TÞe�ij þ Byðx;TÞeic þ %Byðx;TÞe�ic: ð11bÞ

Here j ¼ kx0 � ot0; c ¼ kx0 þ ot0 and k ¼ kðOÞ as defined by the dispersion equation (3). The
amplitudes of transverse and shear components of the displacement vector are related to each
other by the modal coefficient (4), Ay ¼ �ði=MÞAw: Thus Eqs. (11a,b) actually contain four
unknown functions in ‘slow’ variables.
Following the standard scheme of asymptotic analysis, the problem to the order mI is

formulated as
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A general solution of these equations preserves exactly the same dependence of the functions w1;
y1 on ‘fast’ co-ordinates ðx0; t0Þ as

w1 ¼A1
wðx;TÞeij þ %A1

wðx;TÞe�ij þ B1
wðx;TÞeic þ %B1

wðx;TÞe�ic;

y1 ¼A1
yðx;TÞeij þ %A1

yðx;TÞe�ij þ B1
yðx;TÞeic þ %B1

yðx;TÞe�ic: ð13Þ

To ensure a uniform validity of asymptotic expansions (8), see Ref. [15], all secular terms should
be removed from the right side of Eqs. (12). The terms containing, for example, eij are collected in
left hand side and right side of Eqs. (12)
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The principal determinant of this algebraic system equals zero, so each of the complementary
determinants should also vanish. This gives the amplitude modulation equation, which is
cumbersome and not presented here in the interest of brevity.
Similar equations are obtained by collecting the terms containing e�ij; eic and e�ic: The

equations formulated with respect to Aw; %Aw are combined to obtain the following differential
equation in slow temporal and spatial co-ordinates
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This equation describes modulation of a wave travelling with the positive phase velocity, i.e., from
the left to the right. A similar equation is formulated for the wave travelling in opposite direction.

a2
@2Bw

@x2
� 2ab

@2Bw

@x@T
þ b2

@2Bw

@T2
� i a

@Bw

@x
þ b

@Bw

@T

� �
ðsT b � sxaÞ � c2Bw ¼ 0: ð16Þ

Due to the symmetry of the beam, all results of the analysis of Eq. (15) are entirely applicable to
the solution of this equation, so only the modulation of waves propagating from the left to the
right is considered.
The dimensional detuning parameter sT is used in Eqs. (15,16). It is defined as sT ¼ %sT ðc0=hÞ;

where %sT is the non-dimensional detuning parameter. Hereafter, the new coefficient %b ¼ b=ðh=c0Þ
is introduced. A wave-type solution of the linear modulation equation (15) is sought as

Aw ¼ #Awe
iKx�i$T : ð17Þ

The dispersion relation between the ‘slow’ frequency $ and the ‘slow’ wave number K is readily
available as Eq. (17) is substituted into Eq. (15)

aK �
$h

c0

� �
%b

� �2

þ aK �
$h

c0

� �
%b

� �
ð %sT

%b � sxaÞ þ c2 ¼ 0: ð18Þ

This quadratic in aK � ð$h=c0Þ %b equation may have either pure real or complex roots, depending
on the sign of the discriminant.

D ¼ ð %b %sT � asxÞ
2 � 4c2: ð19Þ

For each of the dispersion curves, this discriminant depends on all the parameters of the sandwich
plate composition and on the excitation frequency. If D > 0; the roots of Eq. (18) are real and the
modulated wave propagates in the beam. On the other hand, if Do0; the roots are complex. Since
the frequency of stiffness modulation should be purely real, solution of Eq. (18) in this case gives
two complex conjugate wave numbers. However, Eq. (15) is also derived as a combination of two
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differential equations of the first order in ‘slow’ variables for two complex conjugate functions Aw;
%Aw and each root should be attributed to one of these functions. Standard technique of tracking
the roots (when some damping is introduced in original equations and its magnitude tends to
zero) proves that the root with the positive imaginary part is ‘generated’ by the first term in
Eq. (11a), whereas the root with the negative imaginary part is related to the second term. Then
the first term in Eq. (11a) has the following form

Awðx;TÞeij ¼ #Awe
iKx�i$Teikx0�iot0 ¼ #Aw exp½ðik þ imKÞx0 � ðioþ im$Þt0�:

Thus, for a given excitation frequency o; the modulation of the stiffness of a core ply performed at
frequency $ ¼ 2o and spatially distributed as Z ¼ 2kðoÞ transforms a free wave of wave number
kðoÞ; propagating from the left to the right into a decaying one, which has a complex-valued wave
number m Im½K�iþ mRe½K � þ k: Exactly the same result is obtained for the second term in
Eq. (11a).
Immediately following from Eq. (19), propagation of waves is suppressed at any frequency in

the case of a precise tuning ðsx ¼ %sT ¼ 0Þ: The condition %b %sT � asx ¼ 0 holds true not only when
sx ¼ %sT ¼ 0; but also when %sT=sx ¼ a=b: This observation relaxes the necessity of precise tuning
of the stiffness modulation. It is also easily seen that, as c is proportional to gI

1; in the absence of
stiffness modulation the condition D > 0 always holds and no suppression of wave propagation is
possible. One more simple observation is related to the symmetry of the function D with respect to
the detuning parameters sx and %sT : a simultaneous change in signs of these parameters does not
affect D: It is also clear that when any of these parameters become large, while another one does
not, the determinant becomes positive. Thus, an imperfect tuning of spatial or temporal
modulation results in the transformation of the modulated wave (which could be evanescent in the
case of a perfectly tuned stiffness modulation) back to a travelling type.

4. Analysis of efficiency of wave propagation control by the coupled spatial and temporal stiffness

modulation

To judge whether it is possible to suppress propagation of a given wave at a given frequency, it
is sufficient just to determine the sign of the discriminant D; which depends upon (besides the
parameters of a sandwich plate composition) the magnitudes of detuning parameters sx; %sT ; the
amplitude of stiffness modulation and the excitation frequency. As discussed, in the case of perfect
tuning, this sign is automatically negative and the suppression of wave propagation is always
possible. Thus, the role of detuning parameters appears to be crucial for assessment of efficiency
of this method of suppression of wave propagation and should be explored in more details. In
Fig. 4, a dependence of the discriminant D on a frequency parameter O 	 ðoh=c0Þ is shown for
g0 ¼ 0:01; d ¼ 0:1; e ¼ 0:05; n ¼ 0:3; gI

1 ¼ 0:1g0 for two combinations of detuning parameters,
sx ¼ %sT ¼ 0:0001 (curve 1) and sx ¼ %sT ¼ 0:001 (curve 2). Graphs in Fig. 4a,b are plotted for the
dominantly flexural wave in the ‘low frequency’ range (i.e., the frequency range where only one
propagating wave exists). Due to the detuning, this wave is suppressed, not in the whole frequency
range, but only when O > 0:00047 for sx ¼ %sT ¼ 0:0001 (curve 1, Fig. 4a) and when O > 0:0013
for sx ¼ %sT ¼ 0:001 (curve 2, Fig. 4b). As can be seen from comparison of these graphs, the
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increase in detuning parameters narrows the frequency range, where suppression of wave
propagation is possible.
In the ‘high frequency’ range, two propagating waves exist. The curve in Fig. 4c is plotted in

this range for the dominantly flexural wave. As can be seen, the dominantly flexural wave may be
suppressed by the stiffness modulation at any frequency within this range and there is no
difference between these two particular cases (curves 1 and 2 merge). The curve in Fig. 4d is
plotted for the dominantly shear wave. This wave is suppressed in the whole frequency range for
sx ¼ %sT ¼ 0:0001; whereas for sx ¼ %sT ¼ 0:001; it is suppressed when O > 0:0246:
As can be seen, the suggested mechanism of suppression of wave propagation is rather sensitive

to the tuning of stiffness modulation. Another issue, which is very important from the practical
viewpoint, is the assessment of the decay rate of a given wave generated by a given stiffness
modulation. In fact, some material losses always exist in any real sandwich structure, and the
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Fig. 4. (a) A discriminant versus a frequency parameter O; sx ¼ %sT ¼ 0:0001; the first propagating wave in the ‘low

frequency’ range. (b) A discriminant versus a frequency parameter O; sx ¼ %sT ¼ 0:001; the first propagating wave in the
‘low frequency’ range. (c) A discriminant versus a frequency parameter O; sx ¼ %sT ¼ 0:0001—curve 1,

sx ¼ %sT ¼ 0:001—curve 2, the first propagating wave in the ‘high frequency’ range. (d) A discriminant versus a

frequency parameter O; sx ¼ %sT ¼ 0:0001—curve 1, sx ¼ %sT ¼ 0:001—curve 2, the second propagating wave in the

‘high frequency’ range.
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suppression of wave propagation due to the suggested mechanism should exceed the suppression
effect due to the presence of material losses in order to be recognised as a tool for vibration
control. This assessment is based on calculations of decrements of vibrations and is discussed in
Section 6.

5. Purely temporal stiffness modulation and purely spatial stiffness modulation

In previous sections, stiffness modulation has been considered as performed simultaneously in
space and time domains. However, it is entirely relevant to assume that the stiffness of a beam
varies either only in time or only in space. Following the terminology suggested in Ref. [10], in the
former case a ‘dynamic material’ is still considered, in the latter one a ‘static material’ is
considered. The purely temporal stiffness modulation is defined as

g1ðx; tÞ ¼ gI
1 cos$t: ð20Þ

The same technique as outlined in Section 3 is applied and the following amplitude modulation
equation for the wave propagating from the left to the right is obtained

ða2T � d2
T Þ

@2Aw

@x2
� isT bT ðaT þ dT Þ

@Aw

@x
� 2bT dT

@2Aw

@x@T
� isT b2T

@Aw

@T
� b2T

@2Aw

@T2
þ c2T Aw ¼ 0; ð21Þ

aT ¼ f1 Mk þ
ð1� nÞ

2
eg0

 �
þ

ð1� nÞ
12

2þ
d
e3

� �
eg0k

2 oh

c0

� �2

�
ð1� nÞ2

2
1þ

1

e

� �2

ðeg0Þ
2k2 �

ð1� nÞ2

4
1þ

1

e

� �2

ðeg0Þ
2Mk; bT ¼ b;

cT ¼
gI
1

4
ð1� nÞe f1ðk þ MÞ �

1

12e3
g0k

5

 �
; dT ¼ �

ð1� nÞ
6

eg0 2þ
g0
e3

� �
k4:

As mentioned in Section 3, a similar equation is obtained for the waves propagating in the
opposite direction, so that it is sufficient to analyse only this one. A wave-type solution of this
linear modulation equation is sought in form (17) and a dispersion relation between the ‘slow’
frequency $ and the ‘slow’ wave number K is obtained:

K2ða2T � d2
T Þ þ K 2 %bdT

$h

c0

� �
� %sT

%bðaT þ dT Þ
� �

þ
$h

c0

� �
%b2sT �

$h

c0

� �2

%b2 � c2T ¼ 0: ð22Þ

Unlike the case of the coupled spatial and temporal stiffness modulation, this equation cannot be
reduced to a simple quadratic equation with respect to some linear combination of ‘slow’
parameters K and ð$h=c0Þ: Indeed, these parameters now are not considered as independent of
each other, because the arguments of the exponent in formula (17) have to satisfy the original
dispersion equation (3) up to order m1 terms. In other words, by performing purely temporal
stiffness modulation, the certain point at a given branch of dispersion curve is defined. Then
the modulated wave is formulated as a tangent to this branch in the vicinity of this point.
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The equations *o ¼ oþ m$ and *k ¼ k þ mK are substituted into the dispersion equation (3)
and then the terms to order m1 are collected. This gives the following algebraic equation in
K and ð$h=c0Þ:

K ¼ � %L
$h

c0

� �
: ð23Þ

In formula (23), %L ¼ Z2=Z1

Z1 ¼ �
1

4
2þ

g0
e3

� �
k5 �

1

6
2þ

g0
e3

� �
ð1� nÞegk3 þ

1

6
2þ

g0
e3

� �
k3 oh

c0

� �2

þ
1

6
2þ

d
e3

� �
oh

c0

� �2

k3 þ
1

12
ð1� nÞeg0 2þ

d
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� �
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c0
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�
1

12
k 2þ
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� �
oh

c0
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þ 2þ
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e
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Substitution of Eq. (23) into Eq. (22) gives the quadratic in K equation

K2 a2T � dT þ
%b

%L

� �2
 !

� K %b %sT aT þ dT þ
%b

%L

� �
� c2T ¼ 0: ð24Þ

This may have either pure real or complex roots, depending on the sign of the discriminant

D ¼ %s2T %b2 aT þ dT þ
b

%L

� �2

þ4c2T a2T � dT þ
%b

%L

� �2
 !

: ð25Þ

The same set of parameters of the sandwich plate composition as in all previous calculations is
used. A dependence of the discriminant D on the frequency parameter O 	 ðoh=c0Þ is shown in
the case of perfect tuning ð %sT ¼ 0Þ for the dominantly flexural wave in Fig. 5a and for the
dominantly shear wave in Fig. 5b, respectively. As it can be seen, both these waves are suppressed
in the whole frequency range. However, the effect of suppression of wave propagation vanishes at
very small magnitudes of detuning parameter (for example, %sT ¼ 0:0001), i.e., the purely temporal
stiffness modulation is less ‘robust’ in suppression of wave propagation, than the coupled spatial–
temporal modulation.
A case of purely spatial stiffness modulation is considered similarly. This is defined as

g1ðx; tÞ ¼ gI
1 cos Zx0: ð26Þ
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The following amplitude modulation equation is obtained for the wave propagating from the left
to the right

ða2S � d2
SÞ

@2Aw

@x2
þ isxða2S � d2

SÞ
@Aw

@x
� 2bSdS

@2Aw

@x@T
þ isxbSðaS � dSÞ

@Aw

@T
� b2S

@2Aw

@T2
� c2SAw ¼ 0;

ð27Þ

as ¼ f1
ð1� nÞ

2
eg�

ð1� nÞ
6

2þ
g0
e3

� �
eg0k

4 þ
ð1� nÞ
12

2þ
d
e3

� �
eg0k

2 oh

c0

� �2

�
ð1� nÞ2

2
1þ

1

e

� �2

ðeg0Þ
2k2

�
ð1� nÞ2

4
1þ

1

e

� �2

ðeg0Þ
2Mk; bS ¼ b;

cs ¼
gI
1

4
ð1� nÞe½ f1ðk þ MÞ � f2g0k�; ds ¼ f1Mk:

The dispersion relation between the ‘slow’ frequency $ and the ‘slow’ wave number K is
formulated as

K2ða2s � d2
s Þ þ K sxða2s � d2

s Þ þ 2 %bds

$h

c0

� �� �
� sx %b

$h

c0

� �
ðas � dsÞ �

$h

c0

� �2

%b2 þ c2s ¼ 0: ð28Þ

Substitution of Eq. (23) into Eq. (28) gives the quadratic in K equation:

K2 a2s � ds þ
%b

%L

� �2
 !

þ Ksx a2s � d2
s þ

%b

%L
ðas � dsÞ

� �
þ c2s ¼ 0: ð29Þ

This equation may have either pure real or complex roots, depending on the sign of the
discriminant

D ¼ s2x a2s � d2
s þ

%b

%L
ðas � dsÞ

� �2

�4c2s a2s � ds þ
%b

%L

� �2
 !

: ð30Þ
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Fig. 5. (a) A discriminant versus a frequency parameter O; %sT ¼ 0; the first propagating wave. (b) A discriminant versus

a frequency parameter O; %sT ¼ 0; the second propagating wave.
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In Eqs. (29), (30) the parameter %L is defined from Eq. (23) and it has exactly the same form as in
the case of purely temporal modulation. Unlike both previous cases, this discriminant has
appeared to be positive even in the case of perfect tuning (i.e., sx ¼ 0) at any frequency for the
same set of parameters of the sandwich plate composition as in all previous calculations.

6. Comparison of the efficiency on suppression of wave propagation by stiffness modulation and by

an internal damping

As shown in the previous section, the parametric stiffness modulation may suppress
propagation of flexural and shear waves in a sandwich beam. However, the energy dissipation
due to the material losses plays an important role in analysis of the dynamics of sandwich plates
with stiffness modulation [5,7]. Actually, the material losses also transform waves propagating in
a beam with no other form of damping into evanescent ones. The rate of decay of these ‘almost
propagating’ evanescent waves is controlled by the magnitude of an internal damping coefficient
and it may conveniently be quantified by the logarithmic decrement of their amplitudes. Thus, to
estimate the practical relevance of suppression of wave propagation by the parametric stiffness
modulation, it is necessary to compare decrements of ‘almost propagating’ waves (those which
would propagate if there were no damping or no stiffness modulation) generated by the material
losses and by the stiffness modulation.
The problem in vibrations of a sandwich beam with the internal energy dissipation and without

stiffness modulation is formulated as follows:

1

12
2þ
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e3

� �
ðw0000 þ *w ’w0000Þ �

ð1� nÞ
12

1þ
1

e

� �2
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d
e
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h

c0

� �2

.w
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1

12
2þ

d
e3
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h

c0
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.w00 ¼ 0;

�
1

2
ðy00 þ *w ’y00Þ þ

ð1� nÞ
2

egðyþ *w’yþ w0 þ *w ’w0Þ þ
1

2

h

c0

� �2

.y ¼ 0: ð31Þ

Here *w is a frequency-dependent coefficient introduced in a stress–strain relation (ex; gxy are
strains, sx; txy are stresses)

sx ¼ E ex þ *w
@ex

@t

� �
; txz ¼ G gxz þ *w

@gxz

@t

� �
:

The Young’s module is defined as *E ¼ Eð1� i*woÞ ¼ Eð1� iwÞ for the stationary vibrations. For
simplicity, the energy dissipation coefficient w is taken as frequency-independent.
In this case, the coefficients of the dispersion polynomial (3) of a sandwich beam become

complex-valued and all its purely real roots also become complex-valued. As is easy to show, the
roots with positive real parts (for a beam with no damping) acquire positive imaginary parts and
vice versa. It simply means that all waves decay in direction of their propagation. The rate of
decay is defined by a ratio of the magnitude of the imaginary part of a given root to the magnitude
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of its real part

Dw ¼ 2p
ki

kr

: ð32Þ

In Sections 3–5, the aim was just to see whether a given wave at a given frequency remains
propagating or becomes evanescent for each of three types of stiffness modulation. Therefore the
roots of Eqs. (18), (24) and (29) have not been computed. Now for a given pair ðk;OÞ the
parameter %L should be found and the quadratic in K Eq. (18) is solved for the case of the coupled
spatial–temporal stiffness modulation and Eq. (24) for the case of the purely temporal stiffness
modulation. If the wave propagation is suppressed, then the wave number becomes complex-
valued and the decrement is

DmE2p
Ki

kr

: ð33Þ

This decrement is computed for a beam without damping and is proportional to the amplitude of
stiffness modulation. Apparently, the vibration suppression by the stiffness modulation makes
sense only if the following inequality is held

Dm > Dw: ð34Þ

Otherwise, the wave propagation is more effectively suppressed by the ‘natural’ material losses,
than by the ‘artificial’ stiffness modulation.
To estimate the balance between these two mechanisms of suppression of wave propagation,

decrements (32,33) are calculated for a sandwich plate with the following set of parameters:
g0 ¼ 0:05; d ¼ 0:1; e ¼ 0:05; n ¼ 0:3: In Fig. 6a, a dependence of the decrements Dw (curves 1–3)
and Dm (curve 4) on the frequency parameter O 	 ðoh=c0Þ is shown for the flexural propagating
wave. As can be seen from this graph, the suggested mechanism of suppression of wave
propagation is competitive with the ‘natural’ mechanism of decay of these waves due to material
losses. It is important to notice that stiffness modulation is particularly efficient at low
frequencies, i.e., exactly when material losses become insignificant due to reduction in velocity of
deformation. It is well known that suppression of low frequency wave propagation presents
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Fig. 6. (a) A dependence of the decrements Dw and Dm on a frequency parameter O; w ¼ 6� 10�3; gI
1 ¼ 0 (curve 1),

w ¼ 2� 10�2; gI
1 ¼ 0 (curve 2), w ¼ 6� 10�2; gI

1 ¼ 0 (curve 3), w ¼ 0; sx ¼ %sT ¼ 0:0001; gI
1 ¼ 0:1g0 (curve 4), the first

propagating wave. (b) A dependence of the ‘equivalent damping coefficient’ on a frequency parameter O; sx ¼ %sT ¼
0:0001; gI

1 ¼ 0:1g0; the first propagating wave.
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serious difficulties in various applications. Therefore the stiffness modulation may offer a
meaningful alternative to existing methods of low-frequency vibration control. As pointed out in
Section 3, perfectly tuned coupled spatial and temporal stiffness modulation can suppress wave
propagation at an arbitrary low frequency. However, if modulation is performed with some
detuning, then (see Fig. 4a) suppression is possible only starting from a certain frequency. In the
case illustrated in Fig. 6a, this frequency is very low indeed ðOE0:0009Þ and there is still a broad
frequency band, where stiffness modulation heavily suppresses wave propagation.
In Fig. 6b, results presented in Fig. 6a are summarized with results of similar computations for

the same sandwich beam at other values of w: The curve in this figure presents a dependence of the
‘threshold’ frequency parameter O on the internal damping coefficient w taken in a logarithmic
scale. This curve is plotted for the following set of parameters of stiffness modulation gI

1 ¼ 0:1g0;
sx ¼ %sT ¼ 0:0001: This threshold is defined as a frequency parameter, at which the condition
Dm ¼ Dw holds true. Stiffness modulation gives larger suppression of wave propagation than
internal damping when a point ðlgðwÞ;OÞ in this graph lies below this curve. For example, if
w ¼ 10�2 and O ¼ 0:01; then it is practical to use stiffness modulation, but if w ¼ 10�2 and
O ¼ 0:04; then it is not. The curve shown in Fig. 6b may also be thought of as the curve, which
gives the magnitude of an ‘equivalent damping coefficient’ generated by the given parameters of
‘vibrational rheology’.
Similar graphs are presented in Fig. 7a, b for the dominantly shear wave above its ‘cut-on

frequency’. Although the functions DwðOÞ (curves 1–3) and DmðOÞ (curve 4) have different shapes
for a shear wave, than they have for a flexural wave, qualitatively the same conclusion is derived—
the suggested mechanism of suppression of wave propagation is efficient at relatively low
frequencies. For a shear wave in the case of precise tuning, its applicability range is bounded by
the ‘cut-on frequency’ from below. These results are summarised in Fig. 7b in the same way as in
the previous case. This curve is plotted for the following set of parameters of stiffness modulation
gI
1 ¼ 0:1g0; sx ¼ %sT ¼ 0:0001:
In the case of purely temporal stiffness modulation, the efficiency of suppression of wave

propagation is much lower. In Fig. 8a, a dependence of the decrement Dw (curves 1–3) and Dm
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Fig. 7. (a) A dependence of the decrements Dw and Dm on a frequency parameter O; w ¼ 6� 10�3; gI
1 ¼ 0 (curve 1),

w ¼ 10�2; gI
1 ¼ 0 (curve 2), w ¼ 2� 10�2; gI

1 ¼ 0 (curve 3), w ¼ 0; sx ¼ %sT ¼ 0:0001; gI
1 ¼ 0:1g0 (curve 4), the second

propagating wave. (b) A dependence of the ‘equivalent damping coefficient’ on a frequency parameter O; sx ¼ %sT ¼
0:0001; gI

1 ¼ 0:1g0; the second propagating wave.
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(curve 4) on the frequency parameter O for the flexural propagating wave is presented for the
same sandwich plate. Similarly to Figs. 6b and 7b, the curve in Fig. 8b presents a dependence of
the ‘threshold’ frequency parameter on the internal damping coefficient taken in a logarithmic
scale. This curve is plotted for the following set of parameters of stiffness modulation gI

1 ¼ 0:1g0;
%sT ¼ 0: When suppression of shear wave propagation by purely temporal stiffness modulation is
considered, it appears that the relevant decrement is extremely small and the effect is very weak.
Comparison of scales in Figs. 6b, 7b and 8b suggests that only the coupled spatial–temporal
stiffness modulation may be efficient for suppression of wave propagation in sandwich plates.
This result supports the discussion given in Refs. [3,4] concerning the necessity to introduce
dynamic modulations to suppress wave propagation.
Suppression of wave propagation due to internal damping is associated with irreversible

transformation of the wave energy into the heat in the material of a beam. It is well-known that,
the heat may be regarded as the energy of hidden very high frequency motions at the micro-level.
The mechanism of suppression of wave propagation considered in this paper is qualitatively
similar. Parametric stiffness modulation generates the interaction between wave motions at
different frequencies and wave numbers, which manifests itself as the energy ‘leakage’ from an
excited mode and therefore its suppression. Although the detailed analysis of the dynamics of a
beam at the modulation frequency lies beyond the scope of the present paper, it should be noted
that similar mechanism of modal interaction has been introduced in [7] to explain the active
control of resonant vibrations of sandwich plates by the stiffness modulation.

7. Conclusions

The stiffness modulation is suggested as a tool to suppress the energy transportation by wave
propagation in an unbounded sandwich beam. Theoretical analysis of wave motions in such a
beam with asymptotically small modulation of stiffness is performed by the standard technique of
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Fig. 8. (a) A dependence of the decrements Dw and Dm on a frequency parameter O; w ¼ 10�8; gI
1 ¼ 0 (curve 1),

w ¼ 2� 10�8; gI
1 ¼ 0 (curve 2), w ¼ 4� 10�8; gI

1 ¼ 0 (curve 3), w ¼ 0; %sT ¼ 0; gI
1 ¼ 0:1g0 (curve 4), the first propagating

wave. (b) A dependence of the ‘equivalent damping coefficient’ on a frequency parameter O; %sT ¼ 0; gI
1 ¼ 0:1g0; the first

propagating wave.
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the method of multiple scales. Three types of stiffness modulation are considered—coupled spatial
and temporal, purely temporal and purely spatial. The following main results are obtained

* Coupled temporal and spatial as well as purely temporal stiffness modulations of fairly small
amplitude are capable of transforming propagating waves into non-propagating ones. The
effect of suppression exists at any excitation frequency in the case of a perfectly tuned
modulation. Coupled spatial and temporal stiffness modulation is more efficient in suppressing
wave propagation, than a purely temporal stiffness modulation. Purely spatial stiffness
modulation does not suppress wave propagation in all considered examples.

* The efficiency of suppression of wave propagation is shown to be sensitive to the magnitudes of
detuning parameters. This mechanism of suppression of wave propagation is most pronounced
and ‘robust’ in the case of coupled spatial and temporal stiffness modulation.

* The suppression of wave propagation due to stiffness modulation is competitive with the
suppression of wave propagation due to internal material losses, especially in the low-frequency
excitation conditions, when coupled temporal and spatial stiffness modulation produces large
‘equivalent damping’.
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